DEPARTMENT OF AGRICULITURE
U. S. FOREST SERVICE

LAKE SURVEY OF THE WILIAMETTE NATIONAL FOREST
by
F. C. Ziesenhenne

Junior Biologist

Eugene, Oregon
December, 1937

# DEPARTMENT OF AGRICULTURE 

U. S. FOREST SERVICE

LAKE SURVEY OF THE WIT,LAMETTE NATIONAL FOREST

## By

Fred C. Ziesenhenne Junior Biologist

## TABLE OF CONTENTIS

Page
INTRODTJCTION ..... 1
PUREOSE OF SURVEY ..... 1
PIRSONNEL: ..... 2
TMME IN THE FIELD ..... 2
EQUJTPMENT. ..... 3
NE MOD OF TAKING AND RECORDING DATA ..... 3
ACKNOWLEDGMENTS. ..... 3
NATIONAL FOREST LAKES SURVEYED. ..... 4
GENERAL CHARACTERISTICS ..... 5
FOOD SUPPLIES. ..... 6
PLANKTON. ..... 6
SEIORE FOODS ..... 8
LAME BOTTOM FOODS ..... 9
PLANT LIFE. ..... 10
BEAVER PLANTING SITES ..... 10
WIIJER KILL ..... 12
SPECIES OF FISH PRESENT ..... 13
CREEL CENSUS OF CATCH. ..... 14
TEST LAKES AND STREANS. ..... 15
LAKE IMPROVENENTS ..... 15
HOLDING AND REARING POOL SITES. ..... 16
STOCKING RECOMINDATIONS FOR LAKIR MANAGEMENT ..... 17
STOCKING CHARTS
DETROIT RANGER DISTRICT. ..... 18
CASCADIA RANGER DISTRICT. ..... 20
MCKHNZIP RENGER DISTRICT ..... 21
OAKRIDGT RANGEIR DISTRICT. ..... 24
APPENDIX
FOOD CHARTS
DETROIT RGNGER DISTRICT ..... 26
CRSCADIA RANGER DISTRICT. ..... 27
NOKFNZIE RANGER DISTRICT ..... 29
OAKRIDGEE RHNGER DISTRICT. ..... 32
FISH CATCH RECORD FORM

## INTRODUCTION

PURPOSE OF THE SURVEY

This report is a continuation of the lake survey of the NIIlamette National Forest which was started in 1936. The survey is being conducted under the joint cooperative agreement between $\mathrm{t}_{1}^{1}$ \& U. S. Bureau of Fisheries, Department of Commerce, and the T-. S. Forest Service, Department of Agriculture, signed March 18, 1935. The survey is sponsored by tentative cooperative program of the U. S, Forest Service and the U. S. Bureau of Fisheries for stream and lake surveys, stream and lake improvements, and detailed fresh water investigations in the National Forests of Region 6, approved Thne 25, 1937.

The purpose of the survey is:
(1) To develop scientific stocking policies for the lakes of the Willametto National Forest.
(2) To determine the need for lake improvemeirts.
(3) To ascertain whetrer or not existing regulations are suitable and to recomnend such changes as seem advissole in the light of facts determined.
(4) To open up for study, special critical problems existing in various waters.
(5) To locate possible rearing pond and hatchery sites.

During the survey collections of fish, fish scale sample's, plants, flankten, crustaceans, mollusks, ind aquatic insects were made. Ihese specimens are being sent to specialists for classification so that the species, range, and distribution of lake flora and fauna will be known. This information will be available to other biologists working on similar programs and naturalists in other fields of science. This information is contained in the report.

This report includes the sur vey date for tras lakes surveyed in 1936 and 1937. About 100 lakes are unsurveyed which are not included in this report. The conditions of the lakes recorded in the report were obtained only on the day the lake was surveyed. Because of the graat seasonal changes, the data listed for the date of survey, is incomplete. From the data obtained a more sound lake management plan is being made. When it becomes possible to visit each lake several times during the year a more complete survey of the sutisonal changes can be made.

## -2-

## PERSONNEL

The survey party consisted of Junior Biologist Fred C. Ziescnhenne, leader of the party; Charles J. Cempbell and Millard F. Howe, Technical Assistants, Seniors in the Geme Mansgement school of Washington State College, Pullman, Washington. On September 10 loth sssistants returned to college and the survices of Ernie Hebert Wert obteinud for the remaining month of field work. During the sumer the party was assisted by numerous volunteors and Forest Selvice officials.

## TIME IN THE FIELD

Four months were devoted to actual field work, June 15 to October 15 inclusive. Due to the heqvy snow fall of last winter, many of the lakes could not be recched until late in July. The lower accessible lakes had to be worked early in the season, leaving only the higher lakes to be surveyed. Adverse weather conditions in the high altitudes concluded the field work for the season of 1937. Tho remainder of the year was devoted to writing the season's report, building the leke managenent plan, and working on the biological collection.

Mr. E. P. Cliff, of the Regional office, and Dr. P. R. Needham of the U. S. Bureau of Fisheries, spent July l to 3 inclusive, in Eugene, discussing problems end plens for the sumner's work. At thet time many problems were presented that required experimental work. It was decided thet a creel census of fish caught would be taken on lakes where Fire Gucrds were ststioned during the summer. Due to a late start and closed seeson on some lakes, incomplete returns were received from only two lakes.

The survey party was agein visited by Mr. E. P. Cliff ex September 21 to 23 inclusive, while working in the Toylor Burn country. During tho visit Wahenna and Torrey Lskes wore surveyed. The evenings were devoted to a conferenco in which stocking recommendetions, test lakes and streams, improvement work, big game problems end the plans for next year's work were discussed.

## EQUIPMFNT

The survey equipment was loaned to the U. S. Forest Service by the U. S. Bureau of Fisheries at Palo Alto, California. The apparatus used in the lake investigations were: Ekman bottom dredge, plankton nets, fish nets, watar sample bottle, a portable rubber air boat, thermometers, notebooks, sieves, preservatives, and other supplies usually employed in biological field collecting.

In addition to furnishing automotive transportation and a pack string of five burros, the U. S. Forest Service provided complete camping equipmont, meps, preservatives, containers, thermometers, camera, collapsible shore sampler, plant press, and a portable rubber air boat.

## NETHODS OF TAKING AND RECORDING DATA

With the exception of a few improvements recommended by Dr. P. R. Needham and Mr. E. P. Cliff, the method of recording data was carried out as directed by Dr. A. S. Hazzard in his "Instructions for Stream and Lake Survey Work", revised edition, mimeographed by the Department of Comerce, U. S. Bureau of Fisheries, April, 1935.

ACKNO WTEDGMENTS
The writer wishes to express his indebtedness to Mr. P. A. Thompson, Supervisor of the Willamette National Forest, Mr. E. P. Cliff, of the Regional Office, the Eugene office personnel, the District Rangers and their staffs, Dr. Paul R. Needham, of the U. S. Bureau of Fisheries, and numerous friends who assisted the party or contributed information concerning the lakes.

Thanks are due Dr. Morton E. Peck, of Willamette University, for plant identifications; Dr. Fenner Chace of Herverd University for crustacean identifications, and Dr. Trevor Kincaid, of the University of Washington, for the loan of equipment and the classification and mounting of a set of plankton samples for the Willamette National Forest.

## NATIONAL FOREST LAKES SURVEYED

The area of the Willamette National Forest is about $1,800,000$ acres. The Forest is bounded on the north by the Mt. Hood Ne.tional Forest, cn the east by the crest of the Cascade Mountains, beyond which lies the Warm Springs Indian reservation and the Deschutes National Forest, on the south by the Umpqua National Forest and on the west by the fertile Willamette Valley. The greater part of the forest lies within Linn and Lane Counties, while smaller areas are Convained within Douglas and Marion Counties.

The annual average rain fall for the entire forest is about 70 inches. Snow banks were seen on the shores of some of the higher lakes as late as August. The highest mountain peaks of the Cascades are glaciated. Mt. Jefferson a $10,582 \mathrm{ft}$. peak has a total of about 900 acres of glaciers that drain to the west slope and feed the North Sentiam River through numerous tributaries. To the south the Mruee Sisters, all over $10,000 \mathrm{ft}$. in elevation, have a totel of 1.100 acres of glaciers that drain to the west and feed the McKenzie River and its tributeries. These sources keep most of the creuks and streams flowing throughout the year. During August only a few streams were found drying up, with these exceptions, all of the streams are suited for fishing.

The westward flow of the water from the crest of the Cascade Mountains is drained by five major river systems thet eventually reach the Willamette River of the Columbia River drainage system. From the north to the south respectivaly are the Breitenbush River, the North Santiam River, the South Santiam Rivur, the McKenzie River and the Middle Fork of the Willamette River. These rivers and their tributaries afford many miles of spewning beds for the salmon and steelhead.

Six major roads that cross the Cascade Sumnit joining Eastern Oregon with the Willamette Valley, parallel the above five riture. The sixth highway parallels Salt Creek of the Middle Fork of the Willamette River. These roads offer good trensportation to thousands of anglers that fish the lakes and streams annually.

The lakes on the Forest are numerous. Over 250 of them are suitable for fishing. Of this number 174 lakes have been surveyed the past two years. The lakes range in size from Waldo Lake 5053 acres to numerous small lakes unsmited for fish. The average size of the lakes is 26.5 acres.

The watershed of the Willametto Forest is good. Virgin stands of timber cover the greater area of the Forest. At the lower altitudes Douglas fir, cedar, hemlock and hardwoods are the dominant trees, it higher altitudes Lodgepole pine, white pine, hemlock and numerous firs we predominant. Only the higher mountain peaks and lava beds are íree from dense vegetation.

## $-5-$ <br> GENERAL CHARACTERISTICS

With a few exceptions all of the lakes surveyed are of a glacial origin. Terminal and lateral moraines account for the formation of many of the smaller lakes. Some lakes have formed in old cirques. Practically all of the lakes are above 3000 ft. in elevation and lie along the crest of the Cascade Mountains. Evidence of glacial activity can be seen on the rocky shores of many of the lakes. With the exception of Moose Iake, which was formed by a rock slide in Moose Creek Canyon, all of the lakes are above 3000 ft . elevation. Several lakes were found at 7500 ft . elevation on the shoulders of the Three Sisters and one lake exists in the crater on the top of the South Sister. These lakes are not suited for fishing beceuse of the short growing season and the inaccessibility of the lakes. The lakes surveyed were between 3000 and 6100 ft . in elevation. Seventy-five percent of the lakes surveyed were between 4500 and 5500 ft . The majority of these lakes are small and shellow. Only five lakes have a depth of over 100 ft . The average maximum depth of the lakes is 26.5 feet.

Only $26 \%$ of the lakes surveyed had running inlets and outlets with good spawning areas. Fair reproduction was observed in most of these lakes. In some lekes the spawning conditions could be improved. Four percent of the lakes had running inlets but no outlets. Spawning conditions were found to be only frair in thase lakes. Five percent of the lakes had running outlets but no inlots. Thore was little, if any, spawning in these lakes.

Lekes without inlets or outlets comprise $65 \%$ of the 174 surveyed lakes. These lakes are fod by melting snow and rain and maintain their water levels until the snow is exhausted. About June their outlets ceased to flow and a.period of evaporation and seepege begins and continucs until the fall rains commence. Neny of the smaller lakes dry up completely by fall. Spewning in these lekes is an impossibility. Shoal gravel is soon exposed by a receding weter level. In several lakes eastorn brook trout were observed spawning in the gravel at a depth of five

- feet, Since there were no young fish seen in the lake, the eggs probably never hatched at thot depth due to the poor aeriotion. It wes believed thet eastern brook trout could spawn in the bottom grevel of these lakes and maintain themselves. During the survey no reproduction was observed in any of these lakes. In the majority of the cases, eastern brook trout taken from these lakes were not spawning but were absorbing the spewn within the body cavity. Two and sometimes three distinct years of spawn could be found in the body cavity. One eastern brook trout had only the remains of the egg cases in the body cavity, the other portions of the spawn were absorbed. The only solution of maintaining a fishable population in these lakes is to stock the lakes artificially every few years with hatchery fish.

Besides the spawning problem the receding lake lavels prevont the plants from establishine thenselves on the shore. Large lakes with gravel shores are washed free of organic material by wavo action and it is impossible to build up soil on the lake shores. In some cases the
wave action on the shore had under-cut the banks preventing the growth of plants. Such wave washed shores are devoid of outh plant and animal foods.

Temperature variations of water were great curiag the survey and ranged from the extreme high of $81^{\circ} \mathrm{F}$. on the surface of Iavis Lake on July 21, 1935 to Linton Lake which on June 2], 19:3" hed a reati to 7r Fo Juring the survey.

Of the five Kanger Districts on the Forest, West Pourdiry is the on? Iistrict that does not have any lakes. The lakes of the Detiont, Cascadia and MoKenziョ Ranger Districts have been completely surveryd, Thirty-four of the pessible 100 lakes have been semveytd on the Oakridge Ranger Districto Another seascn will ye requ.rez to complete the survey of the lakes in the Oakridee District. In addition to the uncurveyed lakes, about 300 miles of streans remain to be sur.. vevea in the five Ranger Districts.

## FOOD SUPPLIES

The lake foods consist of four general types: plankton or fryf swimming microsconic forms, rottom and shoal aquatic insect food cregonisms, teriestrial insects; which fall into the water, and small foms of veriebrate life, frogs, toads and small fish.

## PLANkTON

All of the lakes were relatively rich in plankton. These organisms consist mainly of free-swimming plants and animals thet live in the upper layers of water. Many are microscopic in size, but when very abunciant or wind drifted, or compacted, they colos the water green ur red. Copepods and water fleas are the predominant forms. They are large cnnugh to be seen when placod over a white background.

Quantitative samples were taken in several large, deep lakes, hut "the practice was discontinued in the small shallow lakes. It was hoped that calculations of the standing crop of plankton could be measured cuartitatively. Due to the varying depth distribution of the plankton, ulo湯 with the seasonal population changes, it was impossible to get accurate measurements.

Qualitative samples were taken in each lake for identification and distribution of species. These samples were forwarded to Dr. Trevor Iijncaid, of the University of Washington, Seattle, for determination. $\AA$ reference collection of mounted slides for microscopic stud; has been presented to the Willamette National Forest by Dr. Trevor Kira.d.a for $l 55$ of the 174 surveyed lakes. The species of plankton terern and their abundance are as follows:

Copepods

| Epischura | nevadensis | Lilljeborg | 45 |
| :---: | :---: | :---: | :---: |
| Diaptomus | tyrselli | Poppe | 35 |
| Diaptomus | shoshone | Forbes | 31 |
| Diaptomus | Sicnicauda | Lilljeborg | 14 |
| Diaptomus | frencisconus | Lilljeborg | 6 |
| Diaptomus | piscinae | Forbes | 4 |
| Diaptomus | washingtonensis | Marsh | 3 |
| cyclops | serrulatus | Fischer | 3 |
| cyclops | prasinus | Fischer | 2 |
| oyclops | albidus | Jurine | 1 |
| Diaptomus | pugetensis | Kinceid, Mss | . 6 |

Lilljeborg 45
Poppe 38
Forbes 31
Lilljeborg 14
Lilljeborg 6
Forbes 4
Marsh 3
her

Jurine l
Kinceid, Mss

Cladocera or water fleas

| Holopedium | gibberum |
| :---: | :---: |
| Daphnia | longispina |
| Bosmina. | longispina |
| Polyphemus | pediculus |
| Scapholeberis | mucronata |
| Chydorus | sphaericus |
| Daphnia | pulex |
| Dinphanosoma | brechyurum |
| Ceriodaphnio | reticulata |
| Bosmina | obtusirostris |
| Ceriodaphnia | quadrangule |


| Zaddech | 48 |
| :--- | ---: |
| (0.F.Muller) | 35 |
| Leydig | 21 |
| (Linne) | 6 |
| (O.F.Muller) | 3 |
| (O.F.Muller) | 2 |
| (De Geer) | 2 |
| (Lieven) | 1 |
| (Jurine) | 1 |
| Sars | .6 |
| (O.F.Muller) | .6 |

Aquatic insect larvae (free swimming)
Chaoborus larvae sp.?
6

Rotatoria (Wheel animalcules)

| $\frac{\text { Rotifers }}{\text { Keratella }}$ | $\frac{\text { Sp.? }}{\text { cochlearis }}$ | (Gosse) | 4 |
| :--- | :--- | :--- | :--- |
| Conchilus | Sp.? | 1 |  |

Mastigophora (Flagellate protozee)
Ceratium hirundinella Muller
Blue-green algac

| Anabaena | $S p$ | $?$ |
| :--- | :--- | :--- |
| Nostoc | Sp | l |

Fresh water algae

| Asterionella | Sp.? | .6 |
| :--- | :--- | :--- |
| Desmids <br> Volvox | Sp.? | 6.6 |

Marion, Lower Erma Bell and Middle Erma Bell lakes had plankton in such abundance that many of the aquatic insects were trapped on the surface of the water. The Secchi turbidity disk could be seen only a few feet below the surface of the water. A plankton net soon became clogged with plankton, which prevented the water from passing through the mesh. Fresh and preserved specimens were sent to Dr. Trevor Kincaid for determination. The plenkton were simple blue-green nlgae belonging to the genera of Anabaena. He also stated, "This algae seems to inhibit the developnent of other forms of life for the time being".

Along with the plankton in the upper layers of water were numerous forms of terrestrial insect life that had blown or fallen into the lakes. These forms constitute the greater portion of trout food during the summer months in some lakes. To date there is no method by which we cen get an accurate quantitative measure of such foods. A qualitative sample cen be easily obtained by studying the food contents of a freshly caught trout. Durine July; 1936, fish taken from Santiam Loke had counts of mosquito pupae as high as 981 per stomach. Rainbow trout caught in Timpanogas Leke in September, 1937 were feeding entirely on winged ants that were found trapped on the surface of the lake by the thousands. Other predominant lend forms of insect life found on the lakes during the summer were yellow jackets, elm beetles, erasshoppers, leafhoppers, wasps, and adult flies:

## SHORE FOODS

An improvement was made over last year's method of taking shore food samples: A porteble l-foot square shore sampler was constructed of sheet iron. The four sides were held together by an "L" shaped clip. By removing the clips the sides could be easily packed in compact form for carrying. At the selected shore site the shore sampler was forced down into the bottom several inches to prevent leakage of organisms from the outside. A square cornered 30 -mesh hand screen was used in sifting out the mud and soil leaving only coarse objects and insect organism. The sifting was continued until 10 consecutive screenings bore no aquatic foods, the sample was then considered complete for one square foot. Large objects within the sampler were washed free of all the organisms. With the 30 -mesh screen midge larvae were taken and counted which last year passed through the coarser screen used.

Predominant forms of shoal foods were: Odonata larvae (Zygoptera), midge larvae, beetles, backswimmers, Trichoptera lervae, Neuroptera larvac, mayfly larvae, leeches, clams, snails, segmented worms, round worms, and shrimps. Shrimps of the genera of Hyallella, Gammarus and Eucrangonx were common in many lakes and super abundant in a few lakes. Crawfish, Astacus Strowbridgii (Stimpson), were taken from the shores of Horse Lrkes, Erma Bell Lakes, Gordon Lakes, and Copepod Lake.

## LAKE BOTTOM FOODS

Lake bottom foods are the animal organisms that are found living in the muck or mud that covers the lake bottom to a depth of a foot or more. The bottom of most of the lakes surveyed consisted of a vegetative muck of dead decaying algae that had settled to the bottom. In depths of 70 feet or more it had a brown appearance. In shallow water the color varied from gray to green.

The most common bottom foods were: midge larvae, alderfly larvae, mayfly larvae, dragonfly larvae, clams, snails, segmented worms, round worms and leeches. These food organisms are most important as they are available the entire year.

Bottom samples were taken in an Ekmen dredge of $1 / 4$ cubic foot capacity. These orgenisms are listed in the chart as the total average number per $1 / 4$ cubic foot. Time does not permit a complete analysis of the bottom organisms either qualitatively or quantitatively. The distribution of midge larvae was interesting. Early in the summer when the water was $50^{\circ}$ or less midge larvae were common in the shallow water. When the water reached the summer temperature of $70^{\circ}$ only cast skins were found in shallow water. The deeper, colder waters had larger numbers of midges. On October 6, 1937 at a depth of 35 feet in Lower Erma Bell, $1 / 4$ of a cubic foot yielded 6,26 midge larvae, which was the highest yield of the past two years. In Tunble Lake alderfly larvae taken in the Ekman dredge averaged about one to $1 / 4$ cubic foot. Food contents of freshly caught eastern brook trout contained as high as 890 alderfly larvae per stomach, many larvae were still alive and active. During the survey many trout stomachs contained food organisms which were not taken either in the bottom or shore smples.

Clams were abundant in all of the lakes surveyed, few if any, were actually taken from fish stomachs in food samples. Snails were taken in a few lakes with running inlets, and outlets. of all the trout sampled, only the cutthroat trout taken from Fish Lake on June 15, 1936 had been feeding on snails. Snails were $80 \%$ of the food organisms present by actual count.

Because of the limited amount of equipment carried, quantitative studies of trout foods were not made. Preserved stomachs were sent to the Oregon State College for complete food analysis. Freshly caught fish were always sampled qualitatively for food organisms. Time does not pemit working up that data.

## PLANT LIFE

A plant press was carried by the survey party of 1937 and $\varepsilon l l$ aquatic and shore plants were collected and pressed. These plants were sent to Dr. Morton E. Peck, of Willemette University, who kindly named the entire collection and returned them to the Willamette National Forest. Sedges were the most abundant plants and were found on the shores of practically every lake. The sedtes were of the following species: Carex cusickii, Mach.; Carex sitchensis, Press.; C. aquatilae, Wahl; C. Exsiccata, Bail. ; C. rostrota, Stokes; C. vericaria, L.; Other conmon shore plants were: Marsh cinquefoil, Comarum palustre, L; Buckbean, Wenyanthes trifoliota, L; and Baltic Rush Juncus balitcua, Willd. The commonest aquatic plents were: Yellow water lillies, Nymphozanthus polysepalus, (Engelm.); water moss, Fontinalis, Sp.; Quiliworts, Isoctes Howellii, Engelm.; I. Bolanderi, Engelmo; Norrow leaf Burreed Sperganium angustifolium, Willd.; Creeping spikewart, 形eocharis palustris, (L) ; Nuttall's Pondweed, Potamageton epihydracra Nuttaliii, Nutt,; Common Bladderwort, Utricularia volgaris, I.; Sagittaria latifolia, Wahl; Callitriche autumnalis, L.; Potomogeton ratans; Nitella Sp. and Rannuculus trichophyllus, Chaix..

Only $17 \%$ of the surveyed lakes were entirely devoid of plent life other thon algae. Many of the shallow, mud bottom lekes hed large beds of Potomogetion and Saggitaria in them. In late fall these plants were heavily fed upon by wild ducks. Yellow water lillies were common in many of the shallow lakes. Lakes with cold running inlets had dense growths of Fontinalis moss, Nitella and Dichelyma in which shrimps were found in great abundance.

Some lakes with undarcut banks caused by wave action were devoid of plant life. It would be hard to get plants to grow on these shores. In lakes where logs had fallen into the lake at right angles to the shore, a little soil and debris could be found lodged in the corner. Carex grass was found growing in these protected areas while the shore was barren of plants. It may pay to experiment and see if log breakweters would protect the shore from wave action ond encourage the growth of plants. A few lakes had their shores entirely lined with sedge grass. These lakes usually had a good supply of shore foods. In several lakes the sedge grass formed the only cover for the fish.

## BEAVER PIANTING SITES

In addition to the survey work, beaver planting sites were located. The following areas have beon selected as good beaver colony sites:

Lower Horse Lake. A colony of beaver moved in to the lake this summer and built a check dam at the outlet that flooded over about two acres of sedge moadow. The sheep usually graze this area. The lake has remained at its flood stage instead of drying up to a few acres as it usually did. The beavers should be protected as they have improved the fishing of the lake. The inlets have good spawning areas so the fish will not have to go down stream to spawn.

Middle Horse Lake is suited for beaver. The shores are lined with willow and alder brush. Raising of the lake level by a dam would not flood any meadows or veluable timber land.

Upper Horse Lake is suited for beaver, but since the Guard Station depends on the creek for the demestic water supply, and the campground is being developed, it would be best not to plant beaver there.

Gnat Lake. This lake has gone back to a meadow since the beaver have been removed and the dem washed out. Beaver should be introduced here to restore the lake.

Porky Lake. Beaver could be planted on Porky Lake. Food plants are abundant at both the inlets and outlet. The bottom foods of this lake are very poor. Introduction of beaver may increase the size of the lake and offer shoals for production of trout food.

Pen Lake. This lake had a beaver colony on it at one time. The lake is prominently figured on maps but since the beaver have left it has been reduced to a marsh unsuited for fish. Elk are known to wallow and $f e e d$ in this lake when the flies bother them. Beaver food trees are abundant.

Corner Lake. This is a large, shallow, brush lined lake. The beavers had a good size colony on this lake several years ago. An old beaver colony site is still to be seen on the east shore of the lake beneath the prominent tree on the shoreline. On the bottom of the lake piles of peeled sticks are still to be seen. This would make an excellent site to re-introduce the beaver.

Goose Lake. At the outlet of this lake are the remains of a beaver dam. Several 20 -inch conifer trees were felled by the beaver and many griddled trees remain on the adjacent areas. Since the beaver have been caught out, Goose Lake has been reverting to a meadow. In August the lake averaged only 3 feet in depth and was unsuited for fish.

Horseshoe Lake. There is old beaver signs at the inlet of Horseshoe Lake. The dam hes been broken down and the pond has reverted to a meadow. Beaver should be restocked at the inlet of Horseshoe Lake.

Nash Lake. This lake has a running inlet and outlet that could be dammed by the beaver. Food plants are abundant on both the inlet and outlet.

Moolack Lake. This lake has an abundance of food and cover with steep banks. Beaver planted here would improve the lake,

Mud Lake. Below Taylor. Burn camp. This lake is rather shallow, not over 5 feet in depth. Food trees line the shore, inlets and outIet. A check dam built by beaver at the outlet would certainly improve this lake. The brush grows up in the inlets and chokes the channel for spawning purposes. Introduction of beaver would not harm any meadows or valuable timber land.

Otter Lake. This lake has an abundance of food trees on the shore and a running inlet. A dam on the outlet would improve this lake.

## WINTER KILL

Experimental plants were recommended last year in order to get some information on winter kill of trout in the shallower lakes. Unfortunately it was too late in the year to reach the lake when the fish were available. It is definitely known that the entire.fish population of Crown Lake was winter killed in 1935. Fish were taken from a number of shallow lakes this year after last year's heavy snow fall and cold winter. Little is known about winter kill, there are several theories that could be experimented with in order to determine the cause. One theory is that plant life devoid of sunlight remove the oxygen from the water for its own metabolic processes, or the decaying of vegetative debris consumes the free oxygen and the fish are asphyxiated. Chemical analysis of the water in the lakes could be taken severol times during the winter to check the oxygen supply. Winter kill may be brought about by shallow lakes freezing solid, or by the weicht of accumulating snow forcing the ice surface down in to the lake bottom. Fish found dead in one shallow lake were firmly embedded in the lake bottom, being forced there, no doubt, by the weight of ice or snow. Lckes with running inlets or outlets do not usually have any winter kill as the supply of oxygen always is on hand.

In the East experiments have been conducted to prevent winter kill. In one experiment an outboard motor wes set up in an ice hole and run, the theory being to keep the water in circulation. *In another experiment a pump was set up on the ice. The water was pumped from the deepest part of the lake and aireated before it seas permitted to return. In one instance boats with outboard motors were continually run up and down a lake to prevent it from freezing over solid. The cost and inaccessibility of the lakes on the Willamette Forest would prohibit such practices.

## SPECIES OF FISH PRESENT

None of the lakes are suited to any species of fish other than trout. Unfortunately some careless individual introduced catfish into Dunlop Lake. Trout are unable to compete with catfish; which in timo will dominate the lake. During the survey mackinaw trout, Cristivonur nomaycush (Walbaum); rainbow trout, Salmo irideus, Gibbons; cutthront trout Salmo clarkii clarkii, Richardson; Loch Leven trout, Salmo Lorenensis, Walker; and eestern brook trout Salvelinus fontinnlis (Mitchell) Were taken from the lakes. The distribution of species of trout in the various lakes is listed on the chart in the appendix.

Only 13 lokes are known to have native fish in them. These fish were cutthroat or rainbow trout thet migrated into the lnkes from the streams. The remaining lakes were stocked artificially with native or exotic fish.

The only exetic trout that have done well in the lakes surveyed wore the eastern brook trout. Loch Leven trout and mackinaw trout stockings have proved to be failures. Neither of these fishes grow very fast at high altitudes and rarely, if ever, do anglers catch these fish on hook and line. In several lakes a school of Loch Leven trout ate the small rainbow and esstern brook fry as fast as they were plented. Attempts to catch the Loch Leven trout with hook and line failed.

Mackinaw trout taken from Big. Lake were feeding on $8^{\prime \prime}$ eastern brook trout. A total of seven $8^{\prime \prime}$ eastern brook trout were taken from the stomachs of three mackinaw trout that averaged $25^{\prime \prime}$ in length. Scale samples of the mackinaw trout were read by a specialist who determined the age of these fish to be over 19 years. During the past 19 years a good share of the fish planted in Big Lake have gone to feed the schools of uncatchable mackinaw trout.

For sport fishing and rapid growth of fish, the only trout suited for these lakes are cutthroat, rainbow and eastern brook. Other trout, bass and coarse fishes should not be planted in the lakes. A hybrid has resulted between the cross of rainbow and cutthroat trout. This hybric grows to a fair size but the number of eges spawned is greatly reduced and only a small percentage of those are fortile. Reproduction from this hybrid is greatly reduced yet they are competitors for the seine food which pure rainbow and cutthroat trout must depend upon for survivel.

[^0]
## CREEL CENSUS OF LAKES

During the past few years numerous lakes have been stocked with trout. Some of these lakes procuced good fishing while in other lakes fishing was poor. Several methods of checking the fish plants have been used. A quantitative sample can be obtained by using a gill net or seine hauling. Since the net is set in one location or hauled at one portion of the lake, the sample of fish is not accurate. Pert $\mathfrak{y}$. or the fish may be driven away by setting a net. The possibilities for error are too great. A better method of getting a record is to get an accurate count of fish actually caught in the lake by the anglers.

In order to get a better check on stockirí policies, fish production and condition of angling on the Willamette Forest, a creel census of the anglers' catch was made on several lakes. Guards on the lakes were supplied with catch recording blanks, scales and rulers for tabulating the returns*. Originally five lakes upon which fire guards were stationed during the summer were selected for creel catch reeords. Three of the lakes were abandoned during the period the guard. was on duty. Unfortunately the fire guards were not on duty on the lakes during the entire summer. When the fire hazard becane critical and during the lightning storms, the guards were sent up to the lookouts for duty. The fishing season on the lakes opened before the guards arrived for duty and closed long after they had left their posts.

The following figures are not complato for the entire season. They will serve, however, to show the trend of fishing from year to year; daily catch of fish and effort required to catch them from year to year; facts relating to species, size, growth and pounds of fish caught annudlly; the need for suitable and balanced restrictive measures.

Upper Horse Lake during the period of July 12 to August 26 had a total of 40 fishermen who fished a total of 215 hours and caught 380 trout. The catch per unit of effort (one hour's. Iishing by one angler) was 1.7 fish. Forty percent of the trout caught were eastern brook, $25 \%$ rainbow and $35 \%$ cutthroat.

[^1]Marion Lake, between July 21 and September 5 had a total of 226 fishermen who fished a total of 1713.5 hours and caught a total of 1394 cutthroat trout for a catch per unit of effort of .8 fish.

TEST LAKES AND STREAMS
During the survey a few test lakes and streams were tentatively selected that were typical of the western slope of the Cascade Mountains. These waters will be used for investigative work to determine: pounds of fish produced per acre, survival rates of hatchery reared trout, growth rates, and to develop scientific stocking and management policies of various species.

The following bodies of water have been selected because: each has problems to be studied, they are heavily fished, they are accessible by auto travel and they are so located that fishermen can be easily contacto: on them. Scott Lake, McKenzie Highway; Elk Lake, Elk Lake Road; Clear Lake, Fish Lake Road; Gold Lake, Willamette Highway and Opal and Timpanceres Lakes, Timpanogas Lake Road. Breitenbush River, Breitenbush Road; Maricis Creek, North Santiam Highway; Horse Creek, off the McKenzie Highway; Soutiz Fork of the McKenzie Rivor, off the McKonzie Highway; Big Fall Creek, Fall Creek Road; and Salmon Creek on the Salmon Creek Road.

## LAKE IMPROVEMENTS

Only a few lakes were in need of physical improvements. Scott Lake could be improved by building a check dam on the outlet. In early spring the lake covers eighty acres, evaporation during the summer months reduce the lake to three bodies of water, of less than 40 acres in extent.

The beavers in the inlet of Ann Lake should be trapped and moved. By checking the flow of water; they flood the horse pasture, raise the temperature of the water, and prevent the fish from going into the inlets to spawn. After removal of the beaver, the dam should also be removed, and an inlet channel should be opened and cleared for spowning.

Pamelia Lake has a lava fault near the outlet of the lake. During the spring heavy run-off the lake level is maintained, in summer the lake begins to reçede until it is just a few acres in size. Twice the hole has been temporarily blocked with sand bags. This leak should be stopped to improve the lake for fishing.

Lost Lake has a fault in its bottom that drains the lake to a marsh of a few inches of water by foll. Fish Lake has a lava bottom that reduced the lake to a mere meadow by fall. Neither Fish nor Lost Lakes are worthy of improvement at the present time.

A wooden screen should be erected in the outlet of Sunset Lake to prevent the eastern brook trout from going down into Horse Lakes which are stockedwith rainbow and cutthroat trout.

A small check dam should be built in the outlet of Herb Lake to hold the water at a higher level during the summer months.

The screen in the outlet of Vogel Lake should be replaced before this lake is stocked. The fish get caught in the outlet during high water and cannot return to the lake.

The three inlets to Nud Lake should be confined to one channel for spawning purposes. Willow and alder brush has choked the original channel and diverted the inlet into three shallow useless channels.

Downfalls and snags have diverted the water of the east inlet of Lower Erma Bell Lake to numerous channels. The snags should be cut out and the water confined to one channel for spawning.

Rainbow spawn used to be taken from Middle Erma Bell Lake. The old fish traps, troughs, and cabin remain on the site. It has not been used far over ten years. The old creek structures have rotted and have fallen down, choking the main channel and diverting the flow of water. The main channel should be cleared of debris and logs and restored for the spawning of the rainbow trout.

## HOLDING AND REARING POOL SITES

In the Detroit Ranger District rearing and holding pools could be constructed at the mouth of Marion Creek near the Guerd Station. This site is on the new North Santiam Highway which is open all year to travel. Pools could be constructed at the outlet or inlet of Elk Lake. The road is open to the lake during the summer. The mouth of the Breitenbush River has several possibilities for holding and rearing pools.

In the Cascadia Ranger District rearing end holding pools could be built; in Fish Lake for summer use only, at Lost Lake, and several places along Hacklemen Creek.

Rearing and holding pool sites in the McKenzie Renger District are: Mouth of Smith River near the Smith River Guard Station, Mouth of Horse Creek, near the McKenzie Ranger Station, Frog Camp just off the MaKenzie Highway, and East Fork of the McKenzie River near the East Fork Guerd Stetion.

Rearing and holding pool sites of the Oakridge Ranger District sre: Timpanogas Lake outlet, Salt Creek near the Gold Lake Guard Ster tion, and Salmon Creek near the Flat Creek Ranger Station.

## STOCKING RECOMMENDATTONS FOR LAKE MANAGEMENT

The following stocking recommendations were devoloped in cozpera tion with Dr. Paul R. Needham, Associate Aquatic Biologist of the U. S. Eurean of Fisneries, at Palo Alto, Califoriiz.

The numbers of fish recommended are not absolute or final, bui preliminary until more deta is obtained. The numbers, species, sizei and frequency of plantings recommended are based on the survey data 0 . 1936 and 1937. The accessibility, fishing intensity, present populefions, spawning areas available, and the length of the growing seasons were clso taken into consideration in order to produce and maintain the largest possible fish population in relation to the food supply.

Native fish, rainbow and cutthroat, have been recmmended for lakes where the conditions are suitable. Eastern brook trout have been recommended in lakes where shoal or spring gravel is available for spawning. Loch Leven and brown trout are not saited to the higher lakes. Former plantings have been unsuccessful in producing large fish. For best results only one species of fish should be planted in a lake. Several lakes have three species of trout in them. These mixtures should be avoided for the best interests of fishing.

| Name of Lake | ```\[ -13- \] \\ Netroit Rang 3r District``` |  |  |  |  |  |  | Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Location |  |  | Es'imatedAcreage |  |  |  |  |
|  | T. | R. | Sec. |  | Number | Yize | Species |  |
| Upper Twin | 85 | 6 E | 19-30 | 10 | 2000 | $2^{\prime \prime}$ | EB | Triennially |
| Lower Twin | 8S | 6E | 29 | 12 | 5000 | $2{ }^{\prime \prime}$ | EB | " |
| Elk | 95 | 6 E | 6 | 63 | 16,000 | $1{ }^{\prime \prime}$ | RB | Arrually |
| Dunlop | 95 | 6E | 5 | 3 | 1000 | $2^{\prime \prime}$ | EB | " |
| Opal | 95 | 5 E | 17 | 8 | -- | $2^{\prime \prime}$ | EB | Present population adequate |
| Mildred | 95 | 8E | 29 | 4 | -- | $2 "$ | $E B$ | " stock sufficient, resurv 3 years |
| Slideout | 95 | 8E | 29 | 8 | 3000 | $2 \cdot 1$ | EB | Biennially |
| Bear | 9S | 8E | 33 | 6 | 3000 | 2 " | EB | " |
| Crown | 95 | 8E | 30 | 12 | 5000 | $1{ }^{\prime \prime}$ | RB | Experimental plant to determi winter kill |
| Claggett | 9S | 8E | 31 | 4 | 1000 | $2^{\prime \prime}$ | EB | Triennially * |
| Sheep | 9 S | 8E | 31 | 1 | None |  |  | Too shallow |
| Leone | 95 | 7 E | 31 | 3 | 2000 | $2^{\prime \prime}$ | EB | Biennially |
| Tumble | 95 | 5 E | 32 | 10 | -- | $2^{\prime \prime}$ | EB | No stocking at present, pupule adequate due to goos spawnin |
| Russell | 105 | 8 E | 11 | 8 | 5000 | 2" | EB | Biennially |
| Bays | 105 | 8E | 14 | 12 | -- | $2^{\prime \prime}$ | EB | None, overpopulated, resurvey in three years |
| Scout | 10 S | 8E | 14 | 6 | None |  |  | No food |
| Rainbow | 105 | 6 E | 28 | 6 | 2000 | $2^{\prime \prime}$ | EB | Triennially |
| Pamelia | los | 8 EE | 32-33 | 25 |  |  | CT | Present reproduction adequate |
| Hunts | 11S | 8E | 7 | 6 |  | 1" | RB | None'present planting of $16,000 \mathrm{RB}$ adequate |
| Hanks | 11S | 8E | 7 | 7 | 4000 | $2{ }^{\prime \prime}$ | RB | Triennially |
| Bingham | 115 | $7 \frac{1}{2}$ | 15 | 5 | 1500 | $1{ }^{\prime \prime}$ | RB | ${ }^{\prime \prime}$ |
| Lake of the Woods | 11S | 8E | 30 | 5 |  | $1 "$ | RB | Present population adequate resurvey in three years. |
| Shallow | 11S | 8E | 31 | 5 | None |  |  | Too shallow |
| Lake Ann | 115 |  | 35 | 20 | 8000 | 27 | EB | Biennially |
| Mart on | 125 | $7 \frac{1}{2} E$ | 1-2 | 353 | 36,000 | $3 \prime$ | CT | Annually |
| Prill | 125 | 8E | 6 | 8 | 2000 | $2^{\prime \prime}$ | EB | Biennially |
| Hife | 125 | $7 \frac{1}{2} E$ | 3 | 12 | '2500 | $1 "$ | RB | ". |
| Pine | 12 S | 7 E | 2 | 16 |  | 1" | RB | Cverstocked no planting for 3 |

Dicioit Renger District (Cont, ${ }^{\text {a }}$ )

Cascadia Ranger District
ล ふ ニた む ニ
罣皆臼
閏昏留

xperimental plant resul Annually
later．
Too shallow，
Trionnially
sjear \＆

Reproduction adequate




-23-

Oakridge Ranger District
$\frac{\text { Number }}{6000} \frac{\text { Size }}{2^{7 i}}$
Estinated
cias Frequency
3000 biennially
Initial płant，if successft
6000 triennially
＂
Initial plant，if successfu
6000 biennially
Triennially
riennially 3000 triennially
Initial plant，if su 9000 triennially
Initial plant，if $s u c c$ 15，000 triennially Biennially
Annually
＂
$"$
$"$

呂呂僉舀
器 뭄角会

に
人
악
$\bigcirc$
ล

0009
0009
0006
0006
80
88
88

| 8 |
| :--- |
| 8 |

8
8
8
$\therefore \circ$
がが心


畞
in 4
1
1
1
0
6
6
$-\infty \stackrel{\substack{\mathrm{m} \\ 1 \\ 0}}{ }$




Moolack
expry
Bu®TD
पөтөH
Bastern
Edward
Torrey
Wahanna
Harvey
$\operatorname{SinJeD}$
$\Lambda ə \triangle \pi E H$
Kiwa

Ganim
Canim
Betty
Gold
L．Marilyn
U．Marilyn
Opal

- 25-

Oakridge Ranger District. (Cont'd)



| NO. | Nerne of Lake | $\begin{gathered} \text { Elev. } \\ \text { Ft. } \end{gathered}$ | Date Surveyed 1936 | Detroit Ranger D <br> Ave, No, bottom Organioms per $\frac{1}{4}$ cuift. | istrict (Con <br> No. Samples taken | t1 $)$ <br> Species of <br> Trout Present | $\frac{\text { Hyralella }_{\text {Garuarus }}}{\text { Shatimps }}$ | No. Shore Food organisms per sq. ft. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | Helis | 4750 | July 20 | 1.8 | 5 | RB | 2 | 20 |
| 33 | Teto | 4750 | " 10 | 70.6 | 5 | DE | 56 | 104 |
| 34 | Chiquito | 4780 | " 10 | 4.8 | 5 | EB | 6 | 17 |
| 35 | blue | 5350 | " 9 | 9 | 5 | ED | 0 | 0 |
| 36 | Bowerr an | 5063 | " 8 | 3.8 | 5 | BB | 7 | 20 |
| 37 | Lava | 3406 | Hug. 27 | Too shallow | to survey |  |  |  |
| 38 | Jorn | 5100 | July 7 | 13.6 | 5 | 23 | 8 | 63 |
| 39 | Red Butte | 5200 | " 13 | 27.4 | 5 | R 3 | 25 | 108 |
| 40 | Mowich | 5100 | " 15 | 29.8 | 5 | B2 | 6 | 118 |
| 41 | Dufiy | 5230 | " 14 | 31.8 | 5 | [ ${ }_{5}$ | 27 | 45 |
| $\pm 2$ | Santiam | 5210 | " 17 | 37.6 | 5 | $E D$ | 111 | 128 |
| 43 | Fay | 4000 | Aug. 27 | 0 | 5 | EB RB | 7 | 10 |




-31-




[^0]:    * Some Studies of Impounded Waters in Ohio, by E. L. Wickliff, and Lee S. Roach: Transactions, American Fish Soc., 1936, p. 82.

[^1]:    * "Methods of Measuring Anglers' Catches in Inland Waters". Needham, P. R. Copeia No. 1, April 10, 1937, p. 41

